- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Rombach, Puck (3)
-
Buchanan, Calum (1)
-
DuPreez, Brandon (1)
-
Fefferman, Nina H. (1)
-
Hobson, Elizabeth A. (1)
-
Larremore, Daniel B. (1)
-
Levet, Michael (1)
-
Perry, K E (1)
-
Pinter‐Wollman, Noa (1)
-
Shai, Saray (1)
-
Sieger, Nicholas (1)
-
Silk, Matthew J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
Bodlaender, Hans L (1)
-
Ye, Dong (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bodlaender, Hans L (Ed.)In this paper, we show that computing canonical labelings of graphs of bounded rank-width is in TC². Our approach builds on the framework of Köbler & Verbitsky (CSR 2008), who established the analogous result for graphs of bounded treewidth. Here, we use the framework of Grohe & Neuen (ACM Trans. Comput. Log., 2023) to enumerate separators via split-pairs and flip functions. In order to control the depth of our circuit, we leverage the fact that any graph of rank-width k admits a rank decomposition of width ≤ 2k and height O(log n) (Courcelle & Kanté, WG 2007). This allows us to utilize an idea from Wagner (CSR 2011) of tracking the depth of the recursion in our computation. Furthermore, after splitting the graph into connected components, it is necessary to decide isomorphism of said components in TC¹. To this end, we extend the work of Grohe & Neuen (ibid.) to show that the (6k+3)-dimensional Weisfeiler-Leman (WL) algorithm can identify graphs of rank-width k using only O(log n) rounds. As a consequence, we obtain that graphs of bounded rank-width are identified by FO + C formulas with 6k+4 variables and quantifier depth O(log n). Prior to this paper, isomorphism testing for graphs of bounded rank-width was not known to be in NC.more » « less
-
Buchanan, Calum; DuPreez, Brandon; Perry, K E; Rombach, Puck (, Theory and Applications of Graphs)Ye, Dong (Ed.)
-
Hobson, Elizabeth A.; Silk, Matthew J.; Fefferman, Nina H.; Larremore, Daniel B.; Rombach, Puck; Shai, Saray; Pinter‐Wollman, Noa (, Biological Reviews)
An official website of the United States government
